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 U.S. Army currently wages 
asymmetric battles against 
insurgencies

 Enemy is hard to detect
◦ Knowledge of local terrain
◦ Ability to mix in with the 

civilian population

 Enemy quickly adapts to 
Army tactics and strategies
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 The needs of Soldiers 
change in response to 
new insurgent strategies

 Real-time adaptive team 
responses to insurgent 
threats are key to mitigate 
the risk in uncertain and 
dynamic battle spaces
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 Goal: Develop ways for teams to learn optimal 
game strategies, even under changing 
mission requirements and team objectives

 Problem: Centralized formulation of multi-
agent games is complex and needs global 
data.  Can we decentralize the dynamics in 
multi-agent games and still achieve optimal 
performance?
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 Background Information
◦ Game Theory for Multi-Agent Systems (MAS)
◦ Graph Theory for Communication Graphs
◦ Synchronization  Control Design Problem

 Cooperative Optimal Control
◦ Local Performance Functions for Team Behaviors
◦ Distributed Hamilton-Jacobi (HJ) Equation

 Multi-Agent Game Distributed Solution
◦ Reinforcement Learning Solution
◦ Online Solution using Neural Networks
◦ Simulation Results
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 MAS comprised of autonomous agents that 
cooperate to meet a system-level objective

 Game Theory used to model the strategic 
behavior of MAS
◦ Outcomes depend not only an agent’s own actions, but 

also the actions of every other agent
◦ Each agent chooses a strategy that independently 

optimizes his own performance objectives without the 
knowledge of other agent strategies

 Team decisions normally solved offline
◦ Coupled Riccati equations for linear systems
◦ Coupled Hamilton-Jacobi equations non-linear systems
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 Consider a graph Gr=(V,E) 
with:
• Nonempty set of N agents

• Set of edges  
• Connectivity matrix
• Set of neighbors
• In degree matrix is denoted as   

 Define the graph Laplacian: 

 If the graph is strongly 
connected: no permutation 
matrix such that: 
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 Consider N agents on Gr with dynamics

 Target node is              , which satisfies the 
dynamics: 

 Synchronization Problem: design local control 
protocols for all agents in Gr to synch to 
target node.
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 Cooperative team objectives can be described 
in terms of the local neighborhood tracking 
error (LNTE)

 Dynamics of the LNTE
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Multi-Agent Games on Graphs



 Goal: To achieve synchronization while 
optimizing some performance measures on 
the agents

 Local Cost Function
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 Let us interpret the control input as 
policies/strategies

 Local Value Function

 Local Hamiltonian Function
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 The control objective of agent i is to find the 
optimal strategy and smallest value:

 Nash equilibrium solution for a finite N-agent 
distributed game is an N-tuple of strategies 
where:
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 Using the stationarity condition                   to 
find the optimal control:

 Substitute into Hamiltonian to get distributed 
Hamilton-Jacobi (HJ) equation
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 There is one coupled HJ equation corresponding 
to each agent.

 Therefore, a solution to this multi-agent game
problem requires a solution to N coupled partial 
differential equations.

 Next, we show how to solve this online in a 
distributed way 
◦ Each agent requires only information from neighbors 
◦ Use techniques from reinforcement learning
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Using Reinforcement Learning



 RL is concerned with how to methodically 
modify the actions of an agent based on 
observed responses from its environment.

 In game theory, RL is considered a bounded 
rational interpretation of how equilibrium 
may arise.

 One technique that has been developed from 
RL research in controls is Policy Iteration (PI)
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 A class of two-step iteration algorithms: 
policy evaluation and policy improvement
◦ Evaluation: Apply a control.  Evaluate the benefit of 

that control.
◦ Improvement: Improve the control policy.

 In control theory, PI algorithms amount to:
◦ Learning the solution to a non-linear Lyapunov

equation
◦ Updating the policy by minimizing a Hamiltonian 

function
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 To solve the multi-agent game in a 
distributed way, the value functions must be 
parameterized.

 However, in our case, it is not clear what 
parametric form the value should take in the 
Hamiltonian.

 The value function needs to be in terms of 
local variables in order to use a local solution 
procedure
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 Step 0: Start with stabilizing initial policies

 Step 1: Given the N-tuple of policies, solve 
for the costs 
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 Step 2: Update the N-tuple control policies by 
trying to minimize the Hamiltonian:

 Step 3: Increment k and repeat to Step 1 until 
convergence
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 Online solution uses an Actor-Critic method
◦ Actor: selects the policy of the agent
◦ Critic: criticizes the policy of the actor

 The output of the Critic drives the learning 
for both the Actor and Critic

 In this solution, Actors and Critics are neural 
networks (NNs)
◦ Approximate value functions and their gradients
◦ Use proper approximator structures 
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 Assumption: For each admissible policy, the 
non-linear Lyapunov equations have smooth 
solutions

 Critic NN

 Actor NN
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 Update Critic: learn the value

 Update Actor: learn the control policy
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 We have provided the base for tuning the actor/critic 
network of N agents at the same time, meaning that 
teams can learn online in real time.

 Persistence of excitation is need for the proper 
identification of the value functions by the Critic NN

 Nonstandard tuning algorithms are required to 
guarantee stability for the Actor NN

 NN usage suggest starting with random, non-zero 
control weights
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 Node 2 can receive 
orders from Node 1 

 Node 2 does not have a 
transmitter strong 
enough to acknowledge 
the order directly.

 Thus Node 2 must use a 
router (Node 3), which 
under a security 
protocol, cannot 
acknowledge Node 2 
directly.

27



 Node Dynamics

 Select              as identity matrices.  Results:
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 Posed the Synchronization Control Problem

 Derived the distributed Hamilton-Jacobi 
equation in terms of local value functions

 Proposed distributed solutions to the Multi-
Agent Game
◦ Offline Policy Iteration Algorithm
◦ Online Solution using Actor/Critic NNs
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 Develop more simulations using more agents 
in time-varying graphs

 Extend the results of this research to graphs 
with a spanning tree (i.e. not necessarily 
strongly connected)

 Incorporate concepts of trust into cooperative 
multi-agent systems
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